AO49 868 BROWN UNIV PROVIDENCE R I LEFSCHETZ CENTER FOR DYNAM==ETC F/6 12/1
A LIAPUNOV FUNCTIONAL FOR A MATRIX NEUTRAL DIFFERENCE=DIFFERENT==ETC(U)
NOV 77 W B CASTELAN: E F INFANTE NO0014=76=-C=0278 '

UNCLASSIFIED NL

| okl
AD
AD49868

END
DATE
FILMED
=78
DO




G o cili o

ADA049868

DG FILE COPYS

AL e

K,,///,A LIAPUNOV FUNCTIONAL FOR

—c——

A
MATRIX NEUTRAL DIFFERENCE-DIFFERENTIAL

[EQUATION WITH ONE DELAY, 4

et v ————

i A A S
e

\ i S ﬁ/ - .-—‘-——.-4
(v fosea 5 B okt
hetz Center for Dynamical Systems 4

Division of Applied Mathematics

Brown University
Providence, R.I. 02912

\Lefsc

and

Departamento de Matematica
Universidade Federa} de Santa Catarina
88.000-Florianopolis, Brasil

)

and

¢ FEB 14 q973

1

E. F. Infante**

Lefschetz Center for Dynamical Systems ”
Division of Applied Mathematics
Brown University

Providence, R.I. 02912

L@ Noveniiggm 77 .- — A
— (245

*
This research was partially supported by CAPES (Coordena ao do

Aperfeigoamento de Pessoal de Nfvel Superior-Brasil) under
Processo no. 510/76.

*

*
This research
Research under

: igd. upported by the Office of Naval
g0014-76-C-02 i
(N

National Science Founda

L1 &3l Gt




A LIAPUNOV FUNCTIONAL FOR A MATRIX

NEUTRAL DIFFERENCE-DIFFERENTIAL EQUATION WITH ONE DELAY

\\
Abstract: For the matrlx neutral difference-differential equation

e

x(t) + Aﬁét;T) = Bx(t) + Cx(t T) we-eonstruet, a quadratic

Llapunov functlonal wﬂléﬂ éives necessary and sufficient conditions
for the asymptotic stability of the solutions of)th?t eguation.

MWe consider a difference equation approximatioq\of the difference-
differential equation, and for thls difference equation we construct,
a Liapunov functloﬁcérom which we obtalnﬂ%he desired Liapunov func-
tional by an appropriate limiting process. The Liapunov functional
thus obtained gives the best possible estimate for the rates of
growth or decay of the solutions of the matrix neutral difference-
differential equation. The results obtained are natural generaliza-
tions of previous results obtained for a matrix retarded difference-
differéntial equation with one delay.

5

\

l. Introduction.

Consider the linear autonomous matrix neutral difference-

differential equation with one delay

%(t) + Ak(t-T) = Bx(t) + Cx(t-1), t > 0, AT

where x(t) is an n-vector function of time, A,B and C are
constant n X n matrices and T > 0. Our purpose

is to construct a Liapunov functional that characterizes the ,5/“*'”




asymptotic behavior of the solutions of equation (1.1).

For a linear autonomous retarded difference-differential
equation with one delay this same problem was considered
recently in [9] for the scalar case, and in [8] for the matrix
case. We will show that the procedures developed in [9] and
[8] can be extended for the neutral difference-differential
equation (1.1).

Several authors, notably Hale [3,6], Melvin [14] and
Sendaula [15], have considered Liapunov functionals for neutral
functional differential equations. Those Liapunov functionals
only give sufficient conditions for the asymptotic stability of
the solutions. The Liapunov functional constructed in this paper
gives necessary and sufficient conditions for the asymptotic
stability of the solutions of (1.1); moreover, it provides the
best possible estimate for the rates of growth or decay of the

solutions.

As in [9], we first consider a difference-equation approxima-

tion of the scalar equation 'T
x(t) + ax(t-T) = bx(t) + cx(t-T), t > 0. (1.2)

For such a difference equation we construct, by means of well-

known methods, a Liapunov function that gives necessary and

sufficient conditions for the asymptotic stability of the solutions.

Taking appropriate limits on this Liapunov function we obtain the

desired Liapunov functional for equation (1.2).




Thé Liapunov functional for the matrix neutral difference-
differential equation (1.1l) is then obtained as a generalization
of the one for the scalar equation. As in [8], the structure of
the Liapunov functional is completely analyzed.

The Liapunov functional constructed depends critically
on a matrix function which must satisfy a special functional
differential equation. The existence, uniqueness and structure
of the solutions of this equation are described. This special

equation is a generalization of the one studied in [1].

2. The Neutral Difference—Difﬁgrential Equation,

Let Lz([a,b],fzn) be the space of all Lebesgue square
integrable functions defined on [a,b] with values on é?n, and
denote by W%([a,b],é@n) the space of all absolutely continuous
functions which have the first derivative in L2([a,b],£?n).
With T > 0 * fixed, consider the Hilbert space & = W;([-T,Olyggn)

with the inner product

0

DT N L
1 ST

b 00, = ¢1(0)6,(0) + f

-T

and the induced norm

0

0 .
[lollz =700 (0) + f 6T (0)6 (0)a0 + f 'T(0)0 (8)a0.
-T

=T

Here, the superscript T denotes the transpose of a matrix.

Let x,%: [-T,») » ®"; then for t > 0 we define the functions

Xgoker [=T,01 > @7 by x (0) = x(£40), % (0) = X(t+0).

t’




Consider the matrix neutral difference-differential equation
X(t) + AX(t-T) = Bx(t) + C(t-T), t > 0, (2.1)

where A,B,C are n X n constant matrices, x(t) 1is an n-vector

and T > 0. Let

x,. = ¢ (2.2)

be a given initial condition, with ¢ € &,
A solution of th=2 initial value problem (2.1)-(2.2) is a

function x: [-T,®) > R? that satisfies the following conditions:

(a)  x, € & for each t > 0;

(b) x satisfies the equation (2.1) a.e. (almost everywhere)

on [0,»); and

It is known that the initial value problem (2.1)-(2.2) has
a unique solution which depends continuously on the initial data

in the norm of & . A proof of this result is given by Melvin
[13], who used the norm

1/2

- S
[1o]] = Je(-1)| + j 1o T(8)¢" (0) |20 :
-1

which is easily seen to be equivalent to the norm defined on our

Hilbert space.

We consider the solution operator T(t): & -+ &, defined




by T(t)¢ = Xeo ¢ € & t > 0. The family T(t), t > 0, is a
Co-semigroup. The infinitesimal generator & of Tit) is
given by ¢ = ¢' and it has a domain (), dense in ¥,

defined by
DY) = (¢ € &|9' € & and ¢'(0) + AD'(-T) = Bd(0) + CP(-T)},

[31].

Let 0(%/) denote the spectrum of &/, i.e.,

Glal] ~ X |detii(iehe ) ~ B = ca '] = 6}, (2.3)

Then, [3], there exists a constant Y such that Re(A) < vy for all
A €0(). Also, for every € > 0 there exists a constant

K > 1 such that

< Ke(y+e)t,

HTE (g, )

For our purposes, it is convenient to consider a representa-
tion of the solutions of (2.1) which is given for every ¢t,u > 0

by the formula

[Y(t) + Y (t-T)Alx, (0) +

0
I_TY(U-G-T)[CXt(G) = Ax{ (@) ]da,




e

where the matrix Y is the solution of initial value problem

t-1 t
Y(t~u) = I + [ a ¥(e=R=T}RA + [ Y (t-g)BdB +
u B u

t-T
L J Y(t"B"T)CdBI
u

(2.6)

Y(0) = I, Y(t=u) = 0 for ¢t < u.

The integrals in (2.6) are Lebesgue-Stieljes integrals, Y(t-u)
as a function of u is left continuous and Var Y(t-.) < =

on [u,t] for every t > u, [7]. From (2.6) we have

Y(t-u) + Y(t-u-T)A =1 + A +

£
+ I [¥(£-B)B + ¥ (t=B=1)C])dB. {2.7)
u

For x € D(¥) it follows from (2.5) that Y(t-u) + Y(t-u-T)A
is an absolutely continuous matrix valued function. Then from (2.7)

we have that

[Y(t-u) + Y(t-uy-1)A] = =-¥(t-u)B - ¥Y(t-u-1)C, a.e.,

i

or

[Y(v) + Y(v-1)A] = Y(V)B + Y(v-1)C, a.e.. (2.8)

Q-IQ.-
<




3. A Liapunov Function for a Difference Equation Approximation
of the Scalar Neutral Difference-Differential Equation.

Our purpose in this section is the construction of a
Liapunov function for a difference equation approximation of the

scalar neutral difference-differential equation

x(t) + ak(t-1) = bx(t) + cx(t-1), t >0 . {3.1)

Let N be fixed, and let the intervals [0,»), [-T,0] be sub-

divided in subintervals of equal length % . Denote the values of
the function xt(e) at the mesh points [x T(-J %)], by xi,
k —
N

k=20,1,..., J=20,...,N. We thus obtain the difference equation

0 0 N k= 0 N
RKpepp ~ ¥ Y al¥y - %) =5 (bx, + cx))
R S0 ey
J -l

an approximation to (3.1). We assume, in this section, that

c # 0, a # 0, and rewrite this difference equation in the form

Yes1 = AYps (3.2)

where denotes the (2N+1)-dimensional vector
Yy

0_.1 N1 N )T
2loe oA N %% *x X
yk— cxk,cnck,...,cxk,-a—T—,...,-a—T— v (3.3)
N N

A

and the (2N+1l) X (2N+1) matrix A 1is given by




o s
T T T
(l+1\—1b)0 ol o (8] EC 0 o 0 NC
1 (o3 Sy ) QG 0 0
0 0 e~ 0 | 0 0 0 0
A= -%’- R Sy e e g ARl e . (3.4)
0 0 S 0 0 1 T o 0 0
0 0 s« s 0 0 0 AN WY 1 0
it A5

It is well-known how to construct a Liapunov function for the
difference equation (3.2) so as to obtain necessary and sufficient
conditions for the asymptotic stability of its solutions, [11,12].

For this purpose, we consider a Liapunov function given by

G(yk) = yEDyk, where D 1is a positive definite matrix. Then the

forward difference AG(yk) = §(yk+l) = ﬁ(yk) is given by

AG(yk) = -ygEyk, where -E ﬁTDR - D. If E 1is a positive
definite matrix, then the solutions will be asymptotically stable.
On the other hand, if we have asymptotic stability, i.e., all
eigenvalues of A have modulus strictly less than one, then for
every positive definite matrix E there exists a unique positive

T

definite matrix D that satisfies the egquation A'DA - D = -E.

Moreover, if for some real number n, 0 < i <1, all the

A have modulus less than one,

eigenvalues of the matrix

—
U |
':l

CRIY M i, it 0 N M i



then to every positive definite matrix E there corresponds a unique

positive definite matrix D that satisfies the equation
ApA - (1-0)p = -E. (3.5)

If ﬁ(yk) = yiDyk, then AV(yk) = —yiEyk - ﬁyiDyk < = ﬁ9(yk).

The matrix A of particular interest here is seen to be
equivalent to a matrix in companion form. In this case, for the
existence, uniqueness and positive definiteness of the matrix D of
equation (3.5) it suffices, [12], for the matrix E to be positive
semidefinite and not identically equal to zero. This remark
allows us to choose particularly simple matrices E; our purpose
is to obtain as simple a form as possible for this matrix D and
for this it is convenient, given the special form of the matrix ﬁ,
to restrict ourselves to certain choices of E. We shall represent

the unique solution D of equation (3.5) in the form

Q
2]
la ]

(3.6)

o
Il
K
O
L ®F

R
0
0

‘

e b i ~T ~ ~
where o 1is a scalar, r = (rl,...,rN) and r = (rl,...,rN)

are N-dimensional vectors, Q = (q.,.) and Q = (ﬁij) are

ij
N x N symmetric matrices and Q = (ﬁij) is an N X N matrix.

The substitution of (3.4) and (3.6) into equation (3.5)

suggests that a particularly simple form for the matrix D can
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be obtained if the matrix E = ET = (eij) is chosen to have zero

entries everywhere except the elements ell’el,N+1 = eN+l,l’

©),2N+1 = S2n+1,1’ SN+1,N+1’ ON+1,2N+1° Son+l,n+1 209 €57 onelc

Moreover, the simplicitv of the structure of the matrix A allows

for the vector rT = ¢t = (rl,...,r,\]) and for the matrices Q,E)
and (:) to be related by q. . = c} ce=g. o for

1Sy 1,] 1,]
1 # 5, 1,3 = LieoesN and for F{ii = for 1 = ;.48 iFf the

following equations are satisfied

qi,j = (l—u)qi_l’j_l, e 9 & Zooaail (3.7a)

qi,l = (l-U)qi_l'i_l: i=2,...N, (3.7b)
T A L

L §C- aqi,l - (l-u)qi_l’N =0, 3= 25 ee Ny (3.7¢c)

T ~
L+gbr + (L-Byg ;- a-dry =0, i=2...0N, (3.7d)

N

and the nonzero elements of E are selected as

1,842 T Sne1,1 T Si,2mel T Somel,d T
> LR o o _ ab 1 ‘
= [(N cu arl)(1+Nb) O (5 c)N crl+
2
a b M A
wdess—vt (l-u)rN], (3.7e)




X

15 2z ~
§C*taa;, - (l'“)qN,N]’ (3.7£)

s I 2
= [(N c) o 2arl T

eN+1,N+1

& T 2 T 2% I A B
®oned sy = "Ly €Y .- 2am; goo * atqyy - (-figg L1, (3.7g)

i 2 T 2%
_[(ﬁ c)“a - 2arl —c + a qll]. (379

CoN+1,N+1 ~ SN+1,2N+1 N

From equations (3.7a-b) it follows that

A, =N+1i . .
5 = = . e w B
9,3 = QW Ay No(i-) fo 2 il
IERSEPAN 2 | o
qi,i = (1-u) ql,l' i Ao N (3.8b)
= _ ALl=]1=® R
9.3 = (1-u) gy qr L = 1,60+ :N (3. 8¢)

Equations (3.7c-d), through use of equa‘ions (3.8a-c),

yield
O, kea © S guy T 2SE ies 1(qN,N-(i—2) - 9,n-(i-1)]
-5 bay, i1 * % ay,5.5 * (l’“)_N+i-qu,N—(i-1) N ©
i=3,...,N, (3.9)
: rpgc= =0 a+ georgy gt 1+ 5 blay ). (3.10)




T 0 1 N
(ﬁ) V(yk), where X, = (xk,xk,...,xk),

2 ¥ N
T I AL

(3.8a-c), (3.9) and (3.10), we obtain the desired Liapunov function

Now, letting G(Xk)

~ T 2

~ E 2 A .
a = (ﬁ c)"a, B = § S 91 U, and using (3.7a-d),

~2

=]

in the form

S st
V(xk) = O‘(xk) +
g ? el = iy + (1-11) ]-
f Rl N N, N- (i-1) IN,N-1
i Xi_l K Xi 5
-(cxk - a —————Ef———) i +
N
01 T -N+1 T T
i + 2xk N [(1L - 2 5 u) (a + N c)qN,N—l + (1 + N b)qN,l]
X0 = Xl
(cxi - a k T k) +
; N
i-1 i
N di-1 : X - X 4
i k k T -N+i .
i 3 3
g j
» X - X
- 3 k K, T T
(cxk a T ) TN +
N
N s .
3 T,-N+iy,6 1,2 1
+ iEl(l =2 B} & 4
3 i-1 af;
N T - i X - X T
e 1 1-2 gy E K2 o (3.11)
'=l S
% N

T
and its forward difference, divided by q !
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AV (x,) g : - : |
-—7PjL-= [26 (b+u) + Gb2 % + B+ b2F 4 |
N
B T - T
+2(1 + g b)e-ab) [ - 2 g ) a4 Ty oo+
4
+ (1 + 2 b)q ](xo)2 T
N j o § k
i
~ T T T - T .5.
+10c® g -2gac’ta-2gw™as Leoyay
’ ';ri
T ~ 2 T N~ Ny 2 i
+ (1 + i b)qN'l] + e = (1~ 2 N M) TBY (%) 7+
DT T 3 it -N+1 T
F et e =2 s At - 2 ) Lty g
=l N
4 ~ 2 T N~ k k,?2
* (1 + 5 blgy 41 + va (1 -2 < u)"¥) T 1" *
N
e T _ . T -N+1 T
+ 2[ac(l + g b + [(1 2 5 u) a4 N C)qN,N—l +
T aby 2 1
+ (1 +ﬁb)qN,1][(l =sjm e~ omell + g bl +
* Be¥ =~ (1= 2= pli {1 =2 <=yl Jelxpxl +
sl TRl | g "9y, n-1 k*x 4
T -N+1

+2[-&'a(l+£b)- (L = .2 =q} (a =

¥ = ¢}
N N N ¢/9,n-1

T ((1 - 8by T - a2 = -
+ (1+ﬁb)qN,1]‘(l c) ac a (1+Nb)]

N
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N-1 N
-ab¥ + (1 -2 5wl TR R P e Sl
& N Wlady g R Wiy p-1! % % T
N
= T ol 1 -N+1 T
+ 2[-Gac 5 + 2a%c g [(1 - 2 g H) (a + 5 C)QN,N-l ¥
L T
+ €1+ Sblg. (1 - ca¥ld = ko oufix,) (3.12)
N N,1 k K- -

I
N

where the off diagonal terms of the Q matrix must be related by

q I — q s = s _ q L —~ @ =l
Npic2 ~ Meicl o -2 Ty N+i-1 T, N-(i-1) TqN,N (i-2) _
N N
2 O T
=B gt WG 2GR O, N- (i-1)
ORI (3.13)

4. A Liapunov Functional for the Scalar Neutral
Difference-Differential Equation.

The results of Section 3 permit us to obtain a Liapunov
functional in an explicit form for the scalar neutral difference-
differential ecquation (2.1). TFor this purpose consider the limiting

process described by

Xk(J) — T Xt(e): -1 <6 <0,
4
IN,i Tee' 28, T 20 20




Vi) o VX,

N> =
AG(xk) .
T e VX,
N
Yigw ) = g DoggieNEL L B R
N0 N R i

These formal limits applied to equations (3.11), (3.12) and (3.13)

yield the equations

~ 2
Vix,) = Gxg(0) +

e2u(9+T)

0
+ 2xt(0)f (a qT+o) + q(—e))(cxt(e) - ax!(b))ad +
e ¥ t

0 .0
+ 2 J j b, () = et By a2 B o ety -
edn B t
“(cx (B) - ax!(8))dBAs +
0 2oy 2 0 2uex 2
+ J e th(e)d8 + I e Y X, (6)4d6, (4.1)
-T -T
Vix,) = [28(b+u) + B+ 5% +
2ut 2
+ 2(c-ab) [agq(T)e + q(0)]]1x (0) +
+ I¥e” = ée_Z“TJXi(-T) » [a* = ;e-zurlki(-T) +
~ 2 2ut ~
+ 2cla=-q(1) - 2aq(0) - a“g(T)e + bYlx, (0)x, (=1) -
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- 2a(f-q(1) - 2aq(0) - a’q(e®" + bYIx, (0%, (-1) -

- 2acht(—T)it(-T) = 2uV(xt), (4.2)
and
q'(-6) - ae2u(6+1)q'(9+T) = —dbr2uya(-0) -
~e2H O+ oty (4.3)

At this juncture, it is convenient to introduce the notation

defined by the equations

-0
g(03 = plamayet 1700,
and to let

o =0 + p(0) + 2ae“Tp(T) + a2p(0)e2uT,
~ ~ T

B = Beu ’

~ ~ UT

Y = Yeu v

which introduced into (4.1), (4.2) and (4.3) yields the equations

0
- N 2 v 2u6= 2
V(xt) = axt(o) + e J_Te th(e)de

0 s
+ ab’ I ez“eyxtz(e)de +
-T




u

+ (p(0) + 2ae Tp(T) + a2p(0)e2“T)xi(0) +

0
+ 2xt(0) J eU(T+e)(p(T+6) + ap(—G)euT).
=
-(cxt(e) - axé(e))de +

WQ2TH4B) )

0
+ 2 J j (cx, (8) - L (0A)
Eilhe £ axt e

-(cxt(e) - axé(e))dBde,

= [2(b+1)a + e’V (Beb2Y) +

2(b+u)p(0) + 2e"‘ap (1) (b+u) +

2uTa(c+au)p(0) + 2eut(c+au)p(I)]xi(0) +

~ T ¥ =80T ~ -81T=2
2e6 - Be . ]xi(—r) + [eétazy - e 6TY]:’:i(-r) +

% LG
2c[a+bYe ]xt(O)xt(-T) -
2afa+bye®TIx, (0)%, (-1)
al Ye xt xt -

2ace6ryxt(—f)ﬁt(-1) -

2uV(xt)




el e

p'(@) - ae“Tp'(T—e) =4(b+u)p(9) +

+ (c+au)eurp(T-0). (4.6)

Equations (4.4), (4.5) and (4.6) have been obtained by formally
taking limits on the Liapunov function for the discrete
approximation to our original functional differential equation. It
is easy to see that (4.4) is a well-defined functional on & and a
straightforward although laborious computation shows that, if

(4.6) is satisfied, (4.5) represents the rate of change of the
functional (4.4) along the solutions of the scalar neutral
functional differential equation with initial conditions in the
domain of the generator; we postpone such an analysis, and use

the results thus far obtained as motivation for the method of

analysis presented in the next section.

5. A Liapunov Functional for the Matrix Neutral
Difference-Differential Equation.

The results of the previous section suggest a form for a
Liapunov functional for the matrix neutral difference-differential
equation (2.1)-(2.2). For this purpose, on the space & consider

the real symmetric quadratic form

0
vie) = 6T (0)Mp (0) + "' j 6T (0)re®" 9 (0) a0 +
-1

0 '
> o I 6T' (8)5e2"% 1 (0)a0 +
=T
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+ 0T o) + " 'aTpT (1) + ") + 2 aTR(0)Al0 (0) +

0
+ 2¢T(o>f " T4 (5 art) + €8TATDT (~0)) - (Ch (@) - AG' (a))da +
-T

0 ,0
s J J 0T (@)cT - ¢T' (@) aT)p(g-a)et (2THI+R),
-T/Q

*(Co(B) - Ad'(B))dpdy, (5.1)

where u 1s a real number, M,R,S are constant n X n real
positive definite matrices, and P(u), 0 < @ < T, is a continuously
differentiable matrix; we assume that P(4) is a solution of the

initial value problem for the functional differential equation

p'(a) - **aTpT (1-0)

(B+uI)P (o) +

+

e“T(CT + uAT)PT(I—u), 0 ga < T (5.2)

’

P(0)

PT(0) = Py (5.3)

where P, is an arbitrary symmetric matrix.

Consider the Fréchet differentiable functional (5.1) evaluated
along a solution of (2.1)-(2.2) with initial conditions in 2():;
this yields a function of time, denoted by V(t) = V(xt), which is
differentiable along such solution; after a straightforward but

lengthy computation, and through use of (5.2)-(5.3), we obtain that




20

) = -2uV(xt) eh

+ xI(O)[(BT+uI)M + M(B+uI) + 2e"° (rR+BTSB) +

+ (BT+u1)p(o) + P(0) (B+uI) + e“T(CT+uAT)PT(T) +

n

T T
+ e"'p (1) (ctun) + e 'ATpT (1) (B+uI) +

2u

T
+ eu (BT+uI)P(T)A + e TATP(O)(C+uA) +

T
e (cTrua") P (0)a1x, (0) -
- "h(x,(0) £} % (=T)) = ) 5.4
e X ,xt(— ),xt(— )) = U(xt ’ (5.4)
: where
) T —UT T —uT.T
h(x, (0), x, (=T), %, (-T)) = [x,(0), =e™" 'x; (-T), =" % (-1)]-
— - — —
R + BISB m+e" 'BTs) ¢ - m+e" 'BTs) A x, (0)
.| cT(m+e""sB) R ~ 24 cTgc e?McTsn —e'”Txt(-T) ’
-aT (mreM 'sB) e?* TaTsc 5 - e?*TaTea —e—utit(—T)
- o R R, il
(5.5) .

This computation is valid only on solutions with initial data‘

on 2D(F); however a direct application of Theorem 3.9 of [16] yields
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that for any solution with initial condition on & we have

. IS i } = Vix.)
that for V(x,) = lim L i L« Wit ).
t AN O = £

The objective of this paper is to show that it is possible

to give an estimate of the rate of growth or decay of the solutions
of the matrix neutral difference-differential equation (2.1)-(2.2),
using a functional of the form (5.1) and its derivative (5.4).

For this purpose, let Y = max{Re|X € 0(%/)}. Given € > 0
and -y = Y + 2¢ we wish to show there exist matrices M,R,S and
a differentiable matrix P(a) satisfying (5.2)-(5.3) so that for
the functionals V(¢) and U($) given by (5.1) and (5.4) with

these matrices we have that
2 2
cyllelly < vie) < eyl o]y (5.5)
and
V(o) < -2uvi(d), (5.7)

for some positive constants cl,cz. If this is possible, a norm is

induced by the square root of the Liapunov functional (5.1),

which we denote by |'¢'Eﬂ’= {v(9)1/2. Relationships (5.6)
and (5.7) show that the norms ||* Eﬂ' and ||-|k¢, are equivalent
on (¢, and that

™0 e i1 -ut

Hxellg, < Hxglly e ™ (5.8)
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or

> 1/2
=Lt
il < H gl s (5.9)

The estimates (5.8) and (5.9) are precisely those stated in (2.4).
Note that the norm |]-|]dy is the best possible one in the sense
that it yields (2.4) witﬁ K = 1. Also, if Yy < 0, it follows

from (5.8) or (5.9) that the Liapunov functional (5.1) proves uniform

exponential asymptotic stability for the solutions of (2.1).

In this manner, we have the following.

Theorem l: Consider the matrix neutral difference-differential

equation with one delay
x(t) + Ax(t-T) = Bx(t) + Cx(t-T)

and the Liapunov functional given by equation (5.1). Let

Y = max{Re A]det[A(I+Ae_AT) - B - Ce_AT] = 0}

and € > 0. If there exist constant positive definite matrices M,R,S
and a differentiable matrix P(®), 0 < @ < T, that satisfies (5.2)
with P(0) = P(O)T, such that the inequalities (5.6) and (5.7) hold
with €11, positive and with -p = Y + 2¢€; then the solutions of the
difference-differential equation satisfy the exponential bound (5.9)

and the equation is exponentially asymptotically stable if u > 0.

In the next two sections we show that an appropriate
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differentiable matrix P(a@) as required by the above theorem can
always be chosen, and we analyze its structure. 1In a further
section we determine appropriate matrices M,R and S so that the
conditions for the above theorem are always satisfied. We thus
demonstrate the existence of a Liapunov functional of the stated form
for the neutral functional differential equation.

At this juncture, we remark, for repeated later use, that for
the particular above choice of -py = Y + 2¢, the spectral radius of

ut

e"'A is always less than one. Indeed, letting x(t) = e Mt

y(t),

t > 0, our original functional differential equation (2.1) becomes

H U

gt) + e"ap(e-1) = (BruDy(t) + (ctumre 'y(t-1), t > 0,

: ’ t
for which the solution operator is given by T(t)eu , where T (t)

is the solution operator of equation (2.1). Now, using eguation

-ct
(2.4) and -p = Y + 2¢, we note that ||T(t)EUt||(ﬁy’§g) < Ba

€ > 0, which implies the uniform asymptotic stability of the solutions

of the above equation. But, from [5], this implies that the

H

& E :
solution to the difference equation vy (t) + e Ay(t-T) = 0 1is also

uniformly asymptotically stable. But this can be the case if and

1T . ;
only if the spectral radius of e1 A 1is strictly less than one.

6. The Functional Differential Equation for P(a).

In this section we consider the functional differential

equation
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T P °
pr(@) - " AP T(t-a) = (B 4uI)P(a) +
3 (CT+uAT)pT(T_a), -0 < o < ®, (62,4}
with the initial condition
i
P(f) = K, (6.2}

where K is an arbitrary n X n matrix. Without any loss of

generality, let u = 0 in equation (6.1), thus obtaining

P'(a) - AP T(T-a)

BTP(u) +

+ CTPT(T—a), —ooi Ll O e (6:.1")

For the particular case A = 0, namely

P'(a) = BIP(a) + CIPL(T-a), =-» < a < o, (6.1")

it has been shown in [1] that the solutions of such an equation
with initial conditions given by (6.2) exist and are unique and
that the linear vector space of all solutions of such an equation
has dimension n2; moreover an algebraic representation of these

solutions was presented. The results for the more general equation

(6.1') are analogous to those presented in [1] for equation (6.1")
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and we only sketch them here. We assume in the sequel that all

the eigenvalues of A lie strictly inside the unit circle.
Defining the matrix F(a) = PT(T—u), the functional differ-

ential equation (6.1') with the initial condition (6.2) reduces to

the system of ordinary differential equations

p'(u) + ATF'(a) = BTP(0) + CTF(a)
(6.3)
P'"(x)A + F'(a) = -P(a)C - F(u)B
or
P'(a) - ATP'(a)A = BTP(¢) + ATP(a)C + CTF(a) + ATF(a)B
(6.3")
F'(a) = ATF' (¢)A = -P(a)C - BTP(a)A - F(a)B - CIF(a)A
with initial conditions
B, TR
P('f) = K,F(E) = K, (6.4)
Consider the notation
pl*(a)
Pla) = (p.i(a)) = | ¢ = [Py (@) peeerPy (@)1,
1) pn*(a) 1 *n

where pi*(u) and p*j(a) are, respectively, the ith row and the jth

column of P(®). Then, equations (6.3') and (6.4) can be rewritten,

through the use of the Kronecker (or direct) product of two matrices
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[10] as the 2n2 system of ordinary differential equations

I ~AQ® A 0 p(a)
d R
0 I+ a@al ¥ g
B® I + A® C C®I+2A K®B p (o)
= , (6.5)
-I ®C - B ®A -I®B -C ®A £ (o)
with initial conditions
Ty _ X T - Vil T LT
p(a) - [kl*lﬁ"l}\n*] [ 4 f(a) - [}\*llcoork*n] . (6.6)

Using the fact that 1 1is not an eigenalue of A, then

I - A is invertible and so is I - A ® A. Thus the system (6.5)

can be rewritten as

3 p (o)
% | ¢(a)

(I1-2a@a L (I1-a®na L
p (@)
-B®I +AR®CQC) c(C®I + A ®B)
’ (65") s
1 -aeat. (T =ABA)
f(@)
«(-I®C~B®A) «(-I ®B - C®1) |_

Consider now the uniqueness of solutions of (6.1')-(6.2). If

this initial value problem has a differentiable solution P ()
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defined on =-» < & < @, it follows that the pair of matrices
P(a),F(d) with F(a) = P (1-a), will satisfy (6.3), (6.4)
and then the pair of vectors p(a),f(a) as defined above, will
satisfy (6.5'), (6.6). Because of the linearity of all the
equations, and the uniqueness of the solutions of (6.5'), (6.6),
it follows that the solution P(a) of (6.1'), (6.2) is unique.
Consider now the question of existence of solutions of
(6.1')-(6.2). The initial value problem (6.5')-(6.6) has a unique
solution (p(a),f(2)) defined on -» < a < «», This implies the
existence of a unique pair of differentiable matrices P (%) ,F(x)

defined on -» < o < © and satisfying (6.3), (6.%). These equations E

can be rewritten as |

d Tid, SRR T
a5 P(a) + A by F(aa) = B'P(a) + C'F(a)
d it T d i
S F (- + A" = P (T-a) = BTF (1~a) + CTP(1-a),
with the initial condition ]
j
1 s H
P(2) K 1 (2). é

Then it follows, from the uniqueness of the solutions, that

F(a) = PT(T-a) for =-» < a < w,

Moreover, it is well known, [2,4], that the system (6.5') has

2n2 linearly independent solutions which can be represented in the
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following fashion. Let Al""’xl' L < 2n2, be the distinct
eigenvalues of the matrix in (6.5'), that is, solutions of the

determinental equation

(I-AQ®AA-RBOI+AX®C) -C®I -A®B
det = 0; (6.7)

I®C+BXA (I-A®A)X + (I =%B®CE A

each Aj' j=1,...,% with algebraic multiplicity mj and

r=1 7

2n2 linearly independent solutions of (6.5') are given by

s
geometric multiplicities n§, § nt = m, ) my = 25", Then, the
J

T T, g=i

Be: il A .
- T = L e Rl (6.8)
q)j,r( ) ¢ izl @1k .z *
¥ g B 2
whete G = ioeesBo e = Yiovapsy J 0. =m,, J m: = 20", and the
J r=1 J ) i 1)

2n2 linearly independent eigenvectors and gencralized eigenvectors

are given by

L -1 0
ALI- " = —el e. =0
[ ]I H]ej’r e],r ’ J'S r

where H is the 2n2 x 2n2 matrix in (6.5"). Changing

notation and returning from the vector to the matrix form, we see

that the 2n2 linearly independent solutions of (6.3) are given by

q "

¢J lr(a) Ay (@ = ‘;‘) q [(@- %C} % LJ rr‘]
a 1=

¥y L@ M]%,rAJ
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r S r
for q=1""ln'lr=ll°-0lsl j=l,...,p, zn.=m-’
J n=l J J
I m. = 2n2, where the generalized eigenmatrix pair (L1 ,mi )
J Nt ok
associated with the eigenvalue Xj satisfies the ecquations
i il T i i L T i-1. T i-1
A.I-B)L. - AL. C +)AA - CM. - AM, B™ = Ali. “A = S
( ] ) Jex J,r( : J.x J.x o Byex
(6.10)
. . R, | T kY i-i T L i-1
it cleml At M _(LI#BY) + (C-AAME A =AM A - M.
J.T J.X Jlr( ] ) ( ) J.r J.X “Jrr
for i = l,...,n?, o= ey Sy Lq =0, MQ = 0. The structure
J J.s J¢S

of these equations is very special; in fact, if they are multiplied

by -1, transposed, and written in reverse order, we have

S e S < T R o
A1 - at (@al) - cl - al BT = -ad i AT 4 ML,
J J.X J.r J.r J.T J.X J.T
((65sE10)
WK Rhit vl i . o i
mocf et Al + 1l (D) + epayrt AT = —arilal 4 il
J.r B2 J. £ ] J.X J.r J.r
r 0T 0T
for i = l,...,nj, £t = lisss Sy Lj,r = Mj,r = 0. This result shows
that if A. 1is a solution of (6.7), -Aj will also be a solution;

moreover, A. and -Aj have the same geometric multiplicity

and the same algebraic multiplicity. Thus, the distinct eigenvalues

always appear in pairs (Aj,—kj). An examination of equations

(6.10) and (6.11) shows that if the generalized eigenmatrix pair
corresponding to Aj are (L; r,M; r), then the generalized eigen-
14 ’ E -T . ‘T
. ! +
matrix pair corresponding to —Aj will be ((-l)l+lM; r (—l)l IL; r).
’ 14

These remarks show that if the solution (6.8) corresponding to Aj is
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added to the solution (6.8) corresponding to -Aj multiplied by

g+l

2 : 4
(-1) , we have n linearly independent solutions of (6.3) given by

=9 : - R i 1
‘j,s(u) . (0 - f) q (o - E)q il Lj,r .
via T +
17 (a) i=1 mi
J.S 29
iT
1 NG ;
R CIEE B S CRER R el
+e ) = (=1y 3
: (g=1)! it 4
i=1 Lt
Jex

T T
= 11 (5). This condition

T
which satisfy the condition E?,r(f) ot

is precisely condition (6.2); it therefore follows that

(@ - 9T @ - )

q ;
f e i S E SR
e i;l (g-1)! & gL
(6.12)
“AL(a - 2) LT
g+i j 20
+ (-1 : ,
(-1) e My e
Bk P 2 2
for q= 1l,...,n;;, L Nn;=m., § m, = 2n°, are n° 1linearly in-
r=1 J -

dependent solutions of (5.10'). Hence, we have shown that

equation (6.1') has n2 linearly independent solutions given by
equation (6.12), where the generalized eigenmatrix pairs (L§,s'M§,s)
satisfy equation (6.10) for one of the elements of the pair

(Aj,—kj), each of which is a solution of equation (6.7).




Making use of the above results,
differential equation (5.2) with initial condition (5.3) has a unique

solution P(®) defined for - < O < «,

7. The Matrix Function P(a) and Its Properties.

In this section we show that the solution P(®) of (6.1)
has an integral representation which is particularly useful for our

purposes. To this end consider the matrix function P(®) defined by

Bla) = I vT(g) e Py (g-a) ™ B gp, o > 0, (7.1)

0

where W 1is an arbitrary symmetric matrix, Y(B) is the solution

of equation (2.6) and u = -y - 2¢, & > 0, This integral
zlways converges since, for every € > 0, we have |[|Y(B)]|]| <
Re(Y+€)B for some ﬁ 2 1.

From (7.1) it immediately follows that

o0

P(0) = PY(0) = f vT(gye"Puy (g)e"Pag, (7.2)
0
and that
E(a) = meT(B)QUBWY(BAJ)eu(B—u)ds = fnYT(u+£)eu(a+€)WY(§)eugd€
o 0

pT (=), — < a <o, (7.3)

We now show that E(a) satisfies the equation

pria) - e"'ATE ' T(t-a) = (BT4uT)P(0) +

s (CT+uAT)euI§T(T—a), 0 <a < T, (7.4)

it is clear that the functional




Indeed, using equation (2.6) in the definition of P(x), we have
B = rYT(B)euBWeu(B_a) (I+A)dB -
0

- JwYT(me“BWe“‘B’“’Y(e-a-r)Ads +
0

(6

B
+ r j T (8) M Pre” By (p-£) Bdgap +
0
“tor (Bt
vT (8) M e (B y (g-£-1) cdap.

The order of integration in the last two terms can be interchanged,

yielding
pa) = e " rYT(B)eUBWe“B(I+A)dB s
0

e rYT(s)e“BWe“‘B’O"”m—u—r)ms +
0

-
rYT(B)eue‘,ku(B-a)Y(s_g)dB peH M g
£

r YT(B)equGu (B{-T)Y(B—Q-T)d[{l@u (~£—OL+T)dg
E T 2

5(“) = M J YT(B)euBWeUB(I+A)dB - euIE(G+I)A +
0

+ o f (5()e"®s + pe+n)e” (5 Vcraz.
o




Every term in (7.5) is an absolutely continuous function; hence

differentiation of (7.5) gives

Td i o~ ~
= -et b P(a+T)}A - P(a)B - e* B a+rt)C -

naln.
Q

v I
)

B JOYT(B)e“BWe“B(I+A)dB +

+ oMo I (B(5)e"*s + Bgrne &Y

o

clde)

(a) = -eut[%a B(a+1)]A - B(a)B - " 'B(a+T)C -

Q»loa
Q
aekd

- u(B(a) + e"'B(at1)A)

d = = 2
B + (g Flarnla = P BrD) -

- B(a+1) (ctua)e’ ?

or
Br(a) + "B (a+T)A = -P(a) (B+uI) - B (a+1) (C+un)e” '

We have, therefore, that P(®) satisfies the equation

-~ ‘[~ ~ ~
P! (=) + &' 'B' (<+T)A = =P (=) (BHUI) - P (1) (CHun)e! s
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but using property (7.3), we obtain that

Hence

-ﬁ'T(a) 4 al B (s TR = BT (u) (B+uI) -

-

- B(-0+1) (C+un)e"’

or

ﬁ'(u) - euTATﬁ'T(T—u)A = (BT+uI)§(a) +

iG o
+ T tetauaty BT (1-a) .

Because of the uniqueness of the solutions of (5.2)-(5.3),
it is seen that P(a) defined by (7.1) is the unique solution
of (5.2)-(5.3) with the initial condition prescribed by (7.2).

We now proceed to show that the following relationship

is satisfied:

2 = (BT+uI)B(0) + B(0) (B+uI) +
+ T cTruaTy8T (1) + "B (1) (crun) +

% ~ 3%
+ " aT8T (1) BruD) + " BTHIDIB(T)A +

+ e ATE (0) (c+un) + M (cT+uaTyB(0)A = -W. (7.6)
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s i

Indeed, using 5(0) and 5(T) given by (7.1) and the relation
e?* "5 (0) = J vT (g-1) " Puy (-1) " Pap,
0

it is easy to see Z can be represented as

N
Il

J BTy (g) + cTyT(g-1)1e"Pwe" Py (p) + Y(p-1)Alap +

0

+ f ivT(g) + ATyl (g-1)1e"Pue" Py (B)B + Y(B-T)ClaB +
0

MR

+ 2u J [YT(B) + ATYT(B—T)]e We“B{Y(G) + Y(B-T)A]dR.
0

Making use of (2.8), we have that

™.

z = f a7 treT(g) + aTyT(g-1)1ePue” Py (8) + Y(B-T)AlldB,
0
from where it follows that 2z = -W.

We remark that to each constant symmetric positive definite
matrix W there corresponds a matrix function P (a) given by
tlal)e This matrix P(a) is the unique solution of (5.2)=~(5.3)
with the initial condition prescribed by P(0) = B(0)T =

0o
J YT(B)euBWY(B)equB which is necessarily positive definite.

0
Conversely, to each P(0) = PT(O) = Py equations (5.2)-(5.3) have

a unique differentiable solution P(®) which, through (7.6) defines a

unique symmetric matrix W with the property that for this W,
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(7.1) gives the unique solution for (5.2)-(5.3) with the pre-
scribed initial condition. It follows that the map W - D(0),

defined by

P(0) = f vT (g)e"Puy () eMPag,
)

as a map on the space of n X n symmetric matrices is one-to-onc,
onto, and it maps positive definite matrices W into positive

definite matrices P (0).

8. Structure of the Liapunov Functional and Its Derivative.

The characterization given in the previous sections for the
matrix function E(u) permit us to put into evidence the particular
structure of the Liapunov functional (5.1) and its derivative (5.4).
In fact, the substitution of the representation (7.1) for P(x) into

the Liapunov functional (5.1), vields

0
V(p) = ¢T(0) M (0) + "' f 0T (0)Re?"%p (0)a0 +
-T

"
& [ o' T)se?"% 1 (9)a0 +
-T

+

J {[Y(B) + Y(R-T)A]® (0) +
0

2up

+

. T
[” ¥(e-a-trter @) - a0t (@) 1aafTe
-1

'{[Y(B) + Y(B-T)A]9 (0) +

0
+ J Y (B=a=1) [CP (a) = A¢>'(0L)]d0t}d8.
-1
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But this functional, using (2.5), can he represented as

V(xt)

O L}
e L j x;T(e)SeZUOxt(e)de -+

it

e

00 Zu
Joxt+B(O)We

0
b nT T 2u0
e (
x, (0)Mx, (0) + e I_Txt(e)Re x, (0)db

(8.1)

where xt+8(0) is the solution of (2.1)~(2.2) for £ > 0 with

initial condition xt(e), =t <@ < 0,

In an analogous manner, using the above notation, equation (5.4)

can be rewritten as

0(xt)

+

—

R+ BTSB

<
. cTm+e" TsB]

-AT[M+eu

S

-2uV(xt) +

| AL i
e [xt(O), - e xt(—t), -e

m+e” ‘BTs]C

1
SB]

xE(O)[—w + (AT+uI)M + M(A+uI) + 2euT(R+BTSB)]xt(0)

-uT.T

xt(—T)]'

. 5 5
-m+e” "'Bis]A x, (0)
PELET -e-“Txt(-T) :

4 -
« g ¥ laallen M (-0




38

9. Bounds for the Liapunov Functional and Its Derivative.

The structure of the Liapunov functional (5.1) and its
derivative (5.4) developed in the previous sections allows us to
establish that it is, always possible to choose positive definite
matrices M,R,S and W (and therefore P(a)) so that bounds of
the form (5.6) and (5.7) always hold. For this purpose, first we

will show that there exist positive constants €11, such that

2 : e
ey l1ol17 < vie) < eyllelly (8.1)
for all ¢ € 9().
Denote by )\min(M) and AmaX(M) the minimum and maximum

eigenvalues of the positive definite matrix M, the corresponding
notation to be used for the positive definite matrices R,S and W.
From (8.1) it irmediately follows that

2 - - i 2
mln(Xmin(M),e lu'TAmin(R),e [l }\min(S))IWHM < V(o).

Using (2.4), it is casilv seen that

Y+¢€
IENCIIERTENTIEE s IE N

Thus, from (8.1) it follows that
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V(®) < [max(A__ (M) ,c’“r"xmaX(R),e,U][)\max(s)) +
pomax D 2y16002
The desired values of €1,C5 will therefore be given by

& = min(kmin(M),e_'u(Txmin(R),e—‘“’rkmin(s)),

and
c2 - max(xmin(M)’elUlIxmax(R)’elU|[Amax(s)) s Amzi(W) KZ‘

Secondly, we proceed to show that equation (5.7) always holds.

Equation (8.2) shows that we only need to choose the positive

definition matrices W,R,S and

M in such a manner that the function

. T -uT T, . -uT.T
=T -~T = -_ =T - w=l .
hl(xt(O) ,xt( ),xt( )) [xt(O), C xt( Jr=e xt( )1
B T T T el o [ ]
W= (ATHT)MM(ART) M Bisjce' T -te” BLS]Ac” %, (0)
T
-(R.+B»TSB)eu
Ty T 0 TT =G
CT[M+eu SB]eu [R—ezu CTSC]SlI eBU éTSA - xt(—~)
L T 0] g % -ut,
-aT e’ Bl e alse is-e>" "aTsa)e! - xz(—'l)
s __J - wnd

is nohnegative.

We note that this form can be rewritten as




hl (xt(O) X (=7) ,>'<t(-T)) =

T, T 1 T I,
— [xt(O)(nHe“ BTS),—e uer(-I)CT,—e urxg(_T)AT].

f_; cE 2—-S‘le-2ur (—
€y

ﬂHeuTSB)xt(O)

-utT
e Cxt(-t)

+ xE(O) W - (AuT)M - M(AHI) - (ReBiSB)e "' -

== T
- e 'BTs) (1 + 2 7R M wre Tsm) 1, (0) +
1

2

T m
+ et XE(-T)[R -l 41+ 2 5eMyeyx, (-1)
e t

ST 3 AT
+ e xt( 1) [S (l+€l)e A SA]xt( )

where El is an arbitrary positive number.
] . 1
First of all, note that since the spectral radius of e’ A
is strictly less than one, then for Cl > 0 sufficiently small

there always exist a positive definite matrix S such that

S = (l+€l)ezuTATSA > 0.

Now we choose R as

R=cT(r+e?*" 1+ %—)S)C + e I;
1 1
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R is then a positive definite matrix.

The matrix

W- AT+I)M - M(AHII) - (R#BsB)e" " -

1 T -1 -2ut :

- M e "BTs) (1 + %}-s )

1

will certainly be positive definite bv taking M =1I and W = k_I,
W

kw > 0 sufficiently large.

Finally, from the particular form of the first term in (9.2)

it is easily seen that this term is positive semidefinite.

In this manner, it is seen that the form hl(xt(O),xt(-T),ﬁt(-T))
can be always made nonnegative.

All the above results can thus be summarized in the form of a

Theorem 2: Consider the matrix neutral difference-differential

equation with one delay

%(t) + AX(t-1) = Bx(t) + Cx(t-T)

and the Liapunov functional given by equation (5.1). Let

AT

My o @ '] = ]

Y = max{Re \|det[X (I+Ae

and € > 0. Then there exist constant positive definite matrices

M,R and S, and a differentiable matrix P(d4), 0 < a < T,

with P(0) = P(O)T such that the functional V 1is positive

definite, bounded above, and
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V < 2(v+e)V.

Note that, if Y < 0, then the above result yields ex~-

ponential asymptotic stability.
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